130mm 光纤预制棒是经 VAD 芯棒和 OVD 包层组合生产工艺制造,主要成分为 SiO₂,根据产品特性在特定区域掺杂有F 和Ge 等其他成分,成品预制棒外径约 130mm,用于拉制满足 ITU-T G. 652. B/D 和 ITU-T G. 657. A1/A2/B3 等标准单模光纤。

产品应用

● 根据客户使用需求拉制多种型号 G.652、G.657 单模光纤。

产品标准

关键技术性能优于 ITU-T 及相关国家标准。

产品特点

● 稳定的折射率剖面、精确的几何尺寸、极低的损耗特性。

几何性能		
预制棒外径 (O.D.)	130-150 (±5) [mm]	
单根棒外径偏差(Tolerance of O.D.)	≤5 [mm]	
预制棒有效长度(Effective L.)	≥1600 [mm]	
预制棒有效重量(Effective W.)	≥45 [Kg]	
预制棒不圆度(Non-cirlucarity)	≤1%	
芯层/包层同心度误差(Concentricity error)	≤0.5 [mm]	
弓曲度 (Bow)	≤1.0 [mm/m]	
外观缺陷性能		
芯棒区域	无缺陷	
每米预制棒包层区域允许存在的气泡数 L 为气泡直径大小	L≤0.5 mm	-
	0.5 mm≤L≤1.0 mm	≤ 8
	1.0 mm≤L≤2.0 mm	≤4
	L>2.0 mm	0
芯层/包层界面	无明显污染物、无杂质、裂痕、刮伤等(白色杂质、 螺旋气 线等对拉丝无影响)	
预制棒表面	表面光滑、无疤痕、无损伤	
拉制光纤产品主要技术性能(常规 G.652.D)		
1310nm 衰减	≤0.344 [dB/km]	
1383nm 衰减	≤0.344 [dB/km]	
1550nm 衰减	≤0.204 [dB/km]	
1625nm 衰减	≤0.244 [dB/km]	
1285-1339nm 波长范围内的色散	≤3.5 [ps/(nm·km)]	
1271-1360nm 波长范围内的色散	≤5.3 [ps/(nm·km)]	
1550nm 色散	≤18.4 [ps/(nm·km)]	
1625nm 色散	≤22.4 [ps/(nm·km)]	
零色散波长	1312±12.4 [nm]	
零色散斜率	≤0.092 [ps/(nm2·km)]	
光纤截止波长λα	1150-1337 [nm]	
1310nm 模场直径 (MFD)	9.2±0.44 [μm]	
1550nm 模场直径 (MFD)	10.4±0.8 [μm]	
衰减不连续性 1310nm、1550nm	≤0.05 [dB]	
芯/包层同心度误差	≤0.54 [µm]	
包层不圆度	≤1.04 [%]	